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ABSTRACT 
The steady, two dimensional laminar boundary layer flow of non- Newtonian power-law fluid passing through a 

continuously moving flat plate under the influence of transverse magnetic field is analyzed. The non-linear partial 

differential equations governing the flow are transformed into a nonlinear ordinary differential equation using 

appropriate similarity transformations. This nonlinear ordinary differential equation is linearized by using Quasi-

linearization technique and then solved numerically by using implicit finite difference scheme. The system of 

algebraic equations is solved by using Thomson algorithm. The solution is found to be dependent on various 

governing parameters including magnetic field parameter M, power-law index n and velocity ratio parameter ε. 

A systematical study is carried out to illustrate the effects of these major parameters on the velocity profiles. It is 

found that dual solutions exists when the plate and the fluid move in opposite directions, near the region of 

separation. 

INTRODUCTION  
Fluids for which the relationship between the shear stress and rate of strain is nonlinear through the origin at given 

temperature and pressure are said to be non-Newtonian. The subject of boundary-layer flow on a continuously 

moving surface traveling through a quiet ambient fluid is currently one of important in view of its relevance to a 

number of engineering processes. Flows due to a continuously moving surface is encountered in several processes 

for thermal and moisture treatment of materials, particularly in processes involving continuous pulling of a sheet 

through a reaction zone, as in metallurgy , in textile and paper industry, in the manufacture of polymeric sheets, 

sheet glass and crystalline materials. An example for a continuously moving surface is a polymer sheet or filament 

extruded continuously from die, or a long thread traveling between a feed roll and wind-up roll. Sakiadis [1] was 

the first to investigate the flow due to sheet issuing with constant speed from a slit into a fluid at rest, he has 

considered the problem of forced convection along an isothermal moving plate. Tsou et.al [2] studied flow and 

heat transfer in the boundary layer on a continuously moving surface whereas Soundalgekar and Murthy [3] 

studied the heat transfer problem by assuming the plate temperature to be variable. 

 

Klemp and Acrivos [4] demonstrated a method for integrating the boundary layer equations through a region of 

reverse flow and applied it to the problem of uniform flow past a parallel flat plate of finite length whose surface 

has a constant velocity directed opposite to that of main stream. Similar problems were considered by Abdelhafez 

[5], Hussaini et. al [6] and Ishak et. al [7]. All of the above investigators, however restrict their analysis to the 

flow of Newtonian fluids. Most fluids such as molten plastics, artificial fibres, drilling of petroleum, blood and 

polymer solutions are considered non-Newtonian fluids. Schowalter [8] has introduced the concept of the 

boundary layer in the theory of non-Newtonian power-law fluids. Acrivos, Shah and Petersen [9] have investigated 

the steady laminar flow of non- Newtonian fluids over a plate.   

 

Howell et.al [10]  and Rao et.al [11] have studied the momentum and heat transfer on a continuous moving surface 

in a power-law fluid. Kumari and Nath [12] discussed over a continuously moving surface with a parallel free 

stream.  

 

Mahmoud and Mahmoud [13] had given the analytical solutions of hydromagnetic boundary-layer flow of a non-

Newtonian power-law fluid past a continuously moving surface. Saritha et.al [14] studied the Quasi-Linearization 

approach to Effects of Heat Source/sink on MHD flow of non-Newtonian power-law fluid past a continuously 

moving porous flat plate with heat flux and Viscous dissipation. N. Kishan and B. Shashidar Reddy [15] studied 

Viscous Dissipation effects on mhd flow of a conducting power-law fluid with a pressure gradient. Recently, 

Anuar Ishak [16] have investigated the steady boundary-layer flow of a non-Newtonian power-law fluid over a 

flat plate in a moving fluid. 
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The object of the present paper is to study the magnetic effects on a steady, two-dimensional laminar flow of a 

power-law fluid passing through a moving flat plate. The numerical solutions are carried out by using the implicit 

finite difference scheme.  

 

MATHEMATICAL ANALYSIS 
Consider a steady, two dimensional laminar flow of a power-law fluid passing through a moving flat plate with 

constant velocity Uw, in the same or opposite direction to the free stream U . It is assumed that x – axis extends 

parallel to the plate, while the y-axis extends upwards, normal to it. Also, a magnetic field of strength H is applied 

in the positive y-direction, which produces magnetic effect in the x-direction. The boundary layer equations 

governing the flow in a power-law fluid can be written as  
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Subject to the boundary conditions  

u = Uw,  v = 0  at  y = 0,       

u  U   as  y        -----(3) 

 

where u and v  are the velocity components along the x and y axes, respectively, xy is the shear stress and  is the 

fluid density. 

The stress tensor is defined as  
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denotes the stretching tensor, K is the consistency coefficient, 



K

 is kinematic viscosity and n is the power-

law index. The index n is non-dimensional, and the dimension of K depends on the value of n. The two- parameter 

rheological eq. (4) is known as the Ostwald-de-waele model or, more commonly, the power-law model. The 

parameter n is an important index to subdivide fluids into pseudo plastic fluids (n<1) and dilatant fluids (n>1). 

For n = 1, the fluid is simply the Newtonian fluid. Therefore, the deviation of n from unity indicates the degree of 

deviation from Newtonian behaviour. With n  1, the constitutive eq. (4) represents shear thinning (n<1) and shear 

thickening (n>1) fluids. Using eq.s (4) and  (5), the shear appearing in  eq. (2) can be written as  
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Now the momentum equation (2) becomes    
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The mathematical problem is simplified by introducing the following dimensionless function f and the similarity 

variable  . 
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where  is the similarity variable, f() is the dimensional stream function, L is the characteristic length and Re is 

the generalized Reynolds number defined as  
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The equation of continuity is satisfied for the stream function (x, y) with the relations 
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The Mathematical problem defined by (1), (2) and the boundary conditions (3) are transformed into the ordinary 

differential equation using the similarity transformation (8) as follows, 
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and corresponding boundary conditions are  

1)()0(,0)0(  fandff     -----(12) 

where x
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  is the magnetic parameter,   = Uw / U  is the velocity ratio parameter. We note that when 

 = 0 (stationary plate) an n = 1 (Newtonian fluid), the present problem reduces to the classical Blasius problem. 

When  < 0, the fluid and the plate move in the opposite directions, while they move in the same direction when 

 >0. The case 0 <  < 1 is when the speed of the plate is less than those of the fluid and the opposite is true when 

 >1. Moreover,  = 1 corresponds to the case when the plate and the fluid move with the same velocity. For 

brevity, in this study we consider only the case   1. 

 

NUMERICAL SOLUTION 
Since equation (11) is highly non-linear it is difficult to find the closed form solution. Thus first equation (11) is 

linearized using the Quasi linearization technique [17] to obtain  
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where F is assumed to be known. 

Now equation (13) with the boundary condition (12) is solved numerically using implicit finite difference scheme 

and Gauss-Seidel iteration method. The computations were carried out by using C programming. The numerical 

solutions of    are considered as (n+1)th order iterative solutions and F are the nth order iterative solutions. The 

step size 0.01 is used to obtain the numerical solution with five decimal place accuracy as the criterion of 

convergence.  

 

RESULTS AND DISCUSSION 
For negative values of  there is a critical value c with two solution branches for c<<0, unique solution for   

c, a saddle-node bifurcation at  = c and no solution for  <  c. The boundary layer approximation breakdown 

at  = c and thus no solution is obtained for   for  < c. These values of c are given in table 1 which are in good 

agreement with Klemp and Acrivos [4], Hussaini et .al [6] and Anuar Ishak and Norfifah Bachok [14] for 

Newtonian fluid. It is seen from the table 1 that the increase of power-law index n decreases the critical value of 

velocity ratio parameter c. 

 

The fluid velocity profiles )(f  are shown in figures 1-4 for various flow parameters magnetic field parameter 

M, power-law index n and velocity ratio parameter . Figure 1 shows that with the increase in the values of power-

law index n, velocity profiles )(f  increases for a positive value of velocity ratio parameter  = 0.5 in the absence 

of magnetic field. The velocity profiles )(f   for selected values of n presented in the absence of magnetic field 

show that the far field boundary condition is approached asymptotically ( i.e. the velocity gradient at large distance 

from the plate is zero).  It is evident from the figure 2 that for each value of power-law index n considered, there 

exist two different profiles for velocity ratio parameter  = -0.25, which support the dual nature of the solution. 

Figure 2(a) drawn for lower branch and figure 2(b) drawn for upper branch with velocity ratio parameter  = -0.25 

shows that the velocity profiles )(f  increases with the increase of power-law index n. It is also observed that 

the effect of power-law index n is more in upper branch for pseudo-plastic fluids ( n < 1). The effect of magnetic 
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field M is shown in figure 3 with velocity ratio parameter  = 0.5 for different fluids such as (a) pseudo-plastic 

fluid (n = 0.6), (b) Newtonian fluid (n = 1.0) and (c) dilatant fluid (n = 1.4). The effect of magnetic field parameter 

M is to decelerate the fluid flow velocity )(f  in all the cases (a), (b) and (c). Figure 4 is shown for velocity 

profiles )(f   (upper branch) for different values of magnetic field parameter M with velocity ratio parameter  

- -0.25 for different fluids such as (a) pseudo-plastic fluid (n = 0.6), (b) Newtonian fluid (n = 1.0) and (c) dilatant 

fluid (n = 1.4). The effect of magnetic field parameter M is to reduce the velocity profiles )(f  far away from 

the plate and reverse phenomenon is observed near the plate. 

 

NOMENCLATURE 
B – Magnetic field intensity 

Dij – stretching tensor 

f   - Dimensionless stream function 

K – consistency coefficient  

L – Characteristic length of the plate 

n – power-law index 

Re – generalized Reynolds number 

Uw – Free stream velocity 

u, v – Velocity components along and normal to the plate 

x, y - Coordinates along and perpendicular to the plate 

η – Dimensionless similarity variable 

  - stream function 

ρ – Density 

σ – Electrical conductivity 

ε – velocity ratio parameter 

τxy - Shear stress  
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Table 1: Variation of c power-law index n 

n c 

0.6 -0.3532 

0.8 -0.3641 

1.0 -0.3816 

1.2 -0.3975 

1.4 -0.4996 

 

 
Fig. 1. Velocity Profiles f  for different values of power-law index n with  = 0.5 and M = 0.0. 
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Fig. 2. Velocity Profiles f  for different values of power-law index n with  = -0.25 and M = 0.0. 
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Fig. 3. Velocity Profiles f   for different values of Magnetic parameter M with  = 0.5. 

(a) n = 0.6 (Pseudo plastic fluid)        (b) n = 1.0 (Newtonian fluid)       (c) n = 1.4 (dilatant fluid) 
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Fig. 4. Velocity Profiles f   for different values of Magnetic parameter M with  = -0.25. 

(a) n = 0.6 (Pseudo plastic fluid)        (b) n = 1.0 (Newtonian fluid)       (c) n = 1.4 (dilatant fluid) 
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